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Abstract

Interactions within brain networks are inherently directional, which are inaccessible

to classical functional connectivity estimates from resting-state functional magnetic

resonance imaging (fMRI) but can be detected using spectral dynamic causal model-

ing (DCM). The sample size and unavoidable presence of nuisance signals during

fMRI measurement are the two important factors influencing the stability of group

estimates of connectivity parameters. However, most recent studies exploring effec-

tive connectivity (EC) have been conducted with small sample sizes and minimally

pre-processed datasets. We explore the impact of these two factors by analyzing

clean resting-state fMRI data from 330 unrelated subjects from the Human Connec-

tome Project database. We demonstrate that both the stability of the model selec-

tion procedures and the inference of connectivity parameters are highly dependent

on the sample size. The minimum sample size required for stable DCM is approxi-

mately 50, which may explain the variability of the DCM results reported so far. We

reveal a stable pattern of EC within the core default mode network computed for

large sample sizes and demonstrate that the use of subject-specific thresholded

whole-brain masks for tissue-specific signals regression enhances the detection of

weak connections.

1 | INTRODUCTION

Resting-state functional magnetic resonance imaging (fMRI) is the

standard tool for the investigation of brain network connectivity.

Most studies characterizing the intrinsic organization of resting-state

networks are based on functional connectivity (FC), which is defined

as statistical dependencies among observed neurophysiological

responses (Biswal et al., 1995). FC has been shown to encode intellec-

tual performance (Song et al., 2008; Van Den Heuvel et al., 2009),

monitoring of external environment (Gusnard & Raichle, 2001), and

emergence of stimulus-independent thoughts (Mason et al., 2007).

Despite the great promise for advancing our understanding of the

cognitive abilities that underlie intellectual feats, such brain-wide

association studies require consortium-level (N > 1000) sample sizes

to avoid under-powered correlations and statistical errors (Marek

et al., 2022). The expense and effort necessary for obtaining and ana-

lyzing large fMRI datasets have resulted in numerous small-sample

studies with exceedingly low replicability (Poldrack et al., 2017;

Szucs & Ioannidis, 2020). Remarkably, sampling variability alone is suf-

ficient to generate nominally significant ($p < 0.05$) but inflated cor-

relations (Marek et al., 2022), whereas the common removal of global

nuisance alters the variance of the residual signal, thereby modifying
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the resulting correlation structure (Fox et al., 2009; Friston, 2011).

Thus, the stability and reliability of FC analyses are strongly limited by

the requirement of large sample sizes and control of noise in fMRI sig-

nals. Another disadvantage of resting-state FC is its inability to cap-

ture the directionality of the observed interactions between brain

regions. A dynamic causal modeling (DCM) approach can be applied

to infer causal (directed) influences between regions (Friston

et al., 2003). The question remains as to whether there are similar lim-

itations for the stable detection of causal interactions between differ-

ent brain regions as in FC?

The basic idea of DCM is to use Bayesian model inversion to esti-

mate the effective connectivity (EC) among neuronal populations from

observed BOLD signals (Friston et al., 2003; Stephan et al., 2010).

Stochastic DCM, initially developed to model task-driven changes in

the EC between brain regions (Li et al., 2012) has been successfully

modified for the analysis of resting-state fMRI data (Friston

et al., 2014). The deterministic spectral DCM version uses a power-

law function in the spectral domain to model the neuronal fluctua-

tions. Such fitting of second-order data features makes this scheme

estimation computationally and statistically much more efficient than

stochastic DCM (Razi et al., 2015). Spectral DCM has recently been

validated using simulated and empirical data for both small and large

brain networks (Razi et al., 2017). Additionally, the within-subject reli-

ability of spectral DCM with respect to subjects' conditions and vari-

ous processing parameters (region of interest [ROI] size and global

signal regression [GSR]) was demonstrated in a longitudinal study

(Almgren et al., 2018). Despite the growing popularity of DCM, small

sample sizes (20–30) are still common in recent studies, possibly lead-

ing to divergent estimates of connectivity parameters at the group

level. Indeed, even in the case of relatively small networks such as the

core default mode network (DMN), the patterns of EC found in differ-

ent studies are not fully consistent (Di & Biswal, 2014; Friston

et al., 2014; Li et al., 2012; Razi et al., 2015; Sharaev et al., 2016).

Thus, the problem of a minimal sample size, required for a robust

DCM analysis, is raised for studies of EC. The main problem with

under-sampled DCM studies, however, is that having few subjects

leads to a relatively small joint model space, which impedes or even

prohibits true parameters estimates due to high inter-subject variabil-

ity. In other words, the correct parameter estimates can be left to

chance or always overestimated because of strong inter-individual

variability (Button et al., 2013; Lindquist et al., 2013).

In the current study, we evaluate the impact of sample size on

the stability of causal interactions between brain regions in Human

Connectome Project (HCP) data to investigate whether this is also a

severe limitation as reported for classical resting-state FC. We explore

the stability of the group EC estimates within the core DMN with

increasing sample size and different combinations of GSR in the com-

paratively large HCP sample. Here, we used public resting-state fMRI

data from 330 unrelated subjects from the HCP database of young

adults. Time series are made available and cleaned from movement-

related and physiological artifacts using the well-tested ICA-FIX

method (Salimi-Khorshidi et al., 2014). This effective noise reduction

should permit a representative definition of the lower boundary of

sample sizes for resting-state DCM, for which common inter-subject

variability allows for stable connectivity estimates.

The core DMN is a well-established intrinsic resting-state net-

work consisting of the ventral medial prefrontal cortex (mPFC), precu-

neus/posterior cingulate cortex (PCC) and is also widely used in

recent EC studies (Di & Biswal, 2014; Friston et al., 2014; Li

et al., 2012; Razi et al., 2015; Sharaev et al., 2016). In his influential

review, Raichle suggested that the core DMN mediates internal

modes of cognitive activity (Raichle, 2015). In a review and meta-

analysis on variability in the healthy DMN, Mak et al. (2017) found

that connectivity strength seems to follow an inverse U-shape with

the strongest coupling in adulthood and weaker FC in children and

the elderly. With regard to cognitive performance, there is some evi-

dence for an association between cognitive performance and FC, as

well as with task-induced deactivation of DMN regions, while these

effects are pronounced with aging and clinical conditions in particular.

Our study of EC during the resting state aims to reveal a stable con-

nectivity pattern and shed light on the roles played by different DMN

regions in the formation of sustained activity patterns. The HCP data-

sets for young adults cleaned from artifacts can be the ideal choice

for such study due to the expected strong interaction within the core

DMN, allowing to reveal the patterns of causal interactions.

The presence of noise in fMRI data is a manifestation of many dif-

ferent confounding sources (Behzadi et al., 2007; Liu, 2016; Liu

et al., 2017). A method widely used to denoise fMRI signals is to cor-

rect resting-state fMRI time-series for fluctuations in the global signal,

which is the average signal across all voxels of the entire magnetic

resonance imaging (MRI) volume. GSR has been shown to enhance

the efficiency of detecting significant FC (Fox et al., 2009; Liu

et al., 2017). Moreover, the effects of GSR on EC within and between

resting-state networks have recently been studied in Almgren et al.

(2020). It was found that the effect of GSR on between-network EC,

averaged over all connections, was negligible to small, whereas the

effect of GSR on individual connections was moderate but non-

negligible (Almgren et al., 2020).

Here, we concentrated on tissue-specific nuisance signals from

the white matter (WM) and cerebrospinal fluid (CSF), which are com-

monly used for filtering fMRI data, because signals of neuronal origin

are not present in these compartments. These nuisance signals are

computed via extraction of fMRI time series from the CSF and WM

masks, and subsequent computation of representative signals using

principal component analysis (Liu, 2016). The cleanup of physiological

noise is known to improve FC results and is an essential step in analy-

sis pipelines (Murphy et al., 2013). In particular, the use of individual

(subject-specific) masks with a high probability threshold during the

extraction of WM and CSF signals enhances filtering performance by

increasing the temporal signal-to-noise ratio (Bartoň et al., 2019). Is

there any impact of such individual (subject-specific) brain masking on

the stability of the EC estimates? To reveal the impact of tissue-

specific signals regression (TSSR) on the results of spectral DCM and

its possible influence on the optimal sample size estimates, all mea-

sures were computed for the different whole-brain masks and combi-

nations of WM, CSF and grey matter (GM) global signals regression.
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2 | METHODS

2.1 | Datasets and preprocessing

The datasets used in our study included 330 unrelated subjects

(163 females, mean age 28.48 and SD 3.43) and were obtained

from the 1200 subjects ICA-FIX denoised release of the HCP's

database (Van Essen et al., 2012). All HCP imaging data were

acquired on a customized Siemens 3T Skyra at Washington Univer-

sity (St Louis) using a multiband sequence. Whole-brain resting-

state fMRI images were acquired with a spatial resolution

2 � 2 � 2 mm and a temporal resolution 0.72 s. Two sessions of

resting-state fMRI data were collected on consecutive days for

each participant, and each session consisted of two runs. The

length of each resting-state fMRI scan was 14:4min (1200 frames).

Details of data collection can be found elsewhere (Smith et al., 2013;

Van Essen et al., 2013). To minimize the possible influence of different

artifacts on the observed patterns of EC, we used the ICA-FIX

denoised HCP dataset comprising four sessions for each subject

(Salimi-Khorshidi et al., 2014). Subsequently, a quality check of the

ICA-FIX denoised HCP datasets was performed for every particular

4D dataset using the DVARS toolbox. The intensity of the HCP data

was normalized and spatially transformed to MNI152 space using

FMRIB Software Library (Glasser et al., 2013). We further increased

the signal-to-noise ratio of the fMRI data in spatial parametric map-

ping package (SPM12b revision 7219) by applying spatial smoothing

using a 5mm Gaussian kernel (Hillebrandt et al., 2014). The SPM12b

package (revision 7219) was used to fit the first level GLMs and com-

pute BOLD signals as the principal eigenvariates of ROIs masked by

spheres (8mm radius) for each of the nodes comprising the core

DMN. The ROI center coordinates were (x=3, y=54, z=�2) for

mPFC, (x=0, y=�52, z=26) for PCC, (x=�50, y=�63, z=32) for

the left inferior pariental cortex (LIPC) and (x=48, y=�69, z=32) for

the right inferior pariental cortex (RIPC).

2.2 | Effective connectivity: First level analysis
with spectral DCM

The causal interactions between sub-regions forming the core DMN

can be examined using DCM (Friston et al., 2003). DCM consists of

two main components: a hemodynamic forward model that describes

the transformation of synaptic activity to the hemodynamic response

and a bilinear model that describes how activity changes as a function

of inputs, connections, and modulations (Stephan et al., 2010). The bi-

linear model consists of the following equation:

dz
dt

¼ Aþ
Xm

j¼1

ujBj

" #
zþCu, ð1Þ

where z is the state of the system describing activity level of each

region in the modeled system and u denotes inputs into the system,

which are the external inputs applied to the system. Given the values

of z and u, the dynamics of the system (1) is estimated via calculation

of the matrix A, which describes the fixed EC between sub-regions,

the matrix C describing the sensitivity of different regions to external

inputs, and the matrix B describing the modulations of connectivity as

a function of experimental manipulation j.

Here, we use spectral DCM, which models the FC (statistical

dependencies) among the time series using cross-spectral density as a

measure for fitting data features in the frequency domain (Friston

et al., 2014). Estimation in the frequency domain is significantly

quicker, more efficient, and more sensitive to group differences (Razi

et al., 2015; Seguin et al., 2019). All the four sessions of the HCP data-

set were used in this study. Four fully connected DCM models were

defined and inverted for every subject using spectral DCM to obtain

posterior estimates of the neuronal parameters using the same stan-

dard priors (Friston et al., 2016). All four session-specific individual

DCMs fitted for every subject were used jointly to maximize the

dimensionality of the model space and make more accurate model

selection and connectivity parameter estimates (Friston et al., 2016;

Zeidman, Jafarian, Corbin, et al., 2019).

2.3 | Effective connectivity: Second level group
analysis

Next, we used the Parametric Empirical Bayes (PEB) approach to

model how individual (within-subject) connections are related

to group means (Zeidman, Jafarian, Seghier, et al., 2019). In accor-

dance with this approach, intrinsic connectivity is treated as a ran-

dom (between-subject) effect, which is modeled by adding a

random Gaussian component to subject-specific parameters. This

random-effects modeling allows the use of the full posterior den-

sity (the expected strength of each connection and the associated

covariance) over the parameters from each subject's DCM for the

estimation of posterior expectation and uncertainty at the group

level (Friston et al., 2016; Zeidman, Jafarian, Seghier, et al., 2019).

To evaluate the interaction of the nodes forming the core DMN,

we used Bayesian model comparison to explore the space of possible

hypotheses (or models), where each hypothesis assumed that a differ-

ent combination of connectivity parameters could characterize all sub-

jects in the group. A candidate model was obtained by removing one

or more connections to produce nested or reduced forms of a full

model. The obtained reduced model yi is retained if its log evidence

satisfies the following condition:

Fi ¼ ln pjyið Þ� ln pjy0ð Þ> �20, ð2Þ

where y0 is the full model. This procedure was performed using

Bayesian model reduction (BMR), which enables analytical calculation

of the log evidence of reduced models from a full model (Friston

et al., 2016; Zeidman, Kazan, et al., 2019).

Then, the posterior probability Pi for each of the best 256 models

was calculated as the softmax function of the log model evidence:
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Pi ¼ exp Fið Þ=
X

j

exp Fj
� �

: ð3Þ

All individual DCM models at a given sample size were re-fitted

using empirical priors calculated as group means from the original indi-

vidual DCMs (Friston et al., 2015; Friston et al., 2016; Litvak

et al., 2015). First, the use of empirical priors informed by all subjects

from the analyzed group enabled us to obtain a joint model space

formed by the nested models derived from the fully connected model

by pruning one or more connections (Friston et al., 2016; Zeidman,

Kazan, et al., 2019). Second, the obtained joint model space was

reduced to a smaller set of 256 plausible models by means of BMR,

based on scoring of a model log-evidence (Friston et al., 2015; Friston

et al., 2016; Litvak et al., 2015; Zeidman, Jafarian, Seghier,

et al., 2019; Zeidman, Kazan, et al., 2019). The above computations at

the group level were performed 100 times for randomly sampled sub-

jects at every considered sample size. Accordingly, all measures used

in our study were computed as the mean of 100 independent compu-

tations for different sample sizes. In particular, we computed the

mean probabilities for each of the reduced models and explored the

variability of the log-evidence estimates by calculating the confidence

intervals for the Bayes factor of the most probable model. The mean

coupling strengths and the corresponding confidence intervals were

computed for each connection. We also report effect sizes and mean

probability of parameters observation during the BMR. A subsequent

focus on weaker connections allowed for the determination of the

minimal sample size required for stable model selection and robust

estimation of connectivity parameters.

2.4 | Tissue-specific signals regression

In principle, data without GSR provides more information to estimate

EC compared to data after GSR, which encourages the use of data

without GSR in DCM studies. Moreover, the effect of the averaged

GSR on DCM was found to be minor and manifested itself mainly in

the case of small networks (Almgren et al., 2020).

The confound signals originating from non-neuronal compart-

ments, such as WM and CSF also affect voxel signals and may be

computed using different approaches and used in different combina-

tions. Tissue-specific WM and CSF signals can be computed using the

same or subject-specific whole-brain segmentation mask for every

subject. The amount of noise also depends on the probability thresh-

old used during the creation of each specific mask. To address these

two issues, we considered three different combinations of tissue-

specific signals that were computed as the first principal components

of brain signals using different whole-brain masks during BOLD signal

extraction.

The first combination WM-CSF-95%INDV comprised WM and

CSF signals, computed separately for every subject by using an indi-

vidual (subject-specific) whole-brain mask with fixed high probability

threshold equal to 0.95; the second one WM-CSF-50%TPM com-

prised the global WM and CSF signals obtained using the standard

SPM tissue probability map (TPM) for the whole-brain segmentation

with fixed probability threshold equal to 0.5; the third one GM-WM-

CSF-70%TPM comprised WM, CSF and GM tissue-specific signals

computed using the standard TPM whole-brain mask at the fixed

threshold equal to 0.7.

3 | RESULTS

3.1 | Stable connectivity pattern within the
core DMN

The stability of the observed connectivity patterns is understood here

as complete reproducibility at the group level for sample sizes exceed-

ing a threshold value. The stable connectivity pattern within the core

DMN revealed in our study is presented schematically in Figure 1.

The mean values of posterior expectations for all connectivity param-

eters computed for the entire population of subjects and the three

different TSSR combinations are shown in Table 1. In all three cases,

the revealed stable EC pattern comprised nine connections. The con-

nections included in the stable pattern were classified as weak if their

mean coupling strengths were lower than the heuristic level of 0.1 or

strong, otherwise.

F IGURE 1 The nodes of the core default mode network (DMN)
and connections between them are schematically indicated by the
circles filled up with the different colors: medial prefrontal cortex
(mPFC) (green), posterior cingulate cortex (PCC) (blue), left inferior
pariental cortex (LIPC) (red), right inferior pariental cortex (RIPC)
(pink). A stable pattern of effective connectivity was formed by
connections that were observed with a high mean probability during
the Bayesian model reduction (BMR). The stable pattern presented in
the plot was computed for the WM-CSF-95%INDV combination of
tissue-specific signals regression (TSSR) using the entire population of
subjects. Stronger connections between DMN nodes are shown by
the thicker arrows. Weak connection is shown by the dashed line
arrow. The mean values of the coupling strengths for all connections
within the core DMN are listed in Table 1.
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3.2 | Minimal sample size for stable model
detection and impact of different TSSR combinations

To reveal a stable connectivity pattern within the core DMN, we com-

pared multiple reduced models that encoded different hypotheses to

determine the best model by using the Bayesian model comparison

implemented in the PEB framework. An efficient search for the

256 most plausible models was performed over the joint space of all

the reduced PEB models by scoring their free energy. The resulting

log evidence for each of the 256 most plausible reduced models was

computed as the difference between the free energy and the free

energy of the fully connected model. This difference, called the Bayes

factor, was used to quantify the supremacy of a specific reduced

model with respect to the fully connected model. The reduced models

with positive log evidence had the largest weights during Bayesian

model averaging (BMA).

It should be noted here that most of the 256 plausible reduced

models demonstrated similar connectivity patterns and can be charac-

terized by the mean posterior probabilities (3), which were computed

for each plausible model at different sample sizes and different TSSR

combinations (see Figure 2a). The reduced model that was observed

with the largest probability can be considered the best model (model

256 in Figure 2a). The best model represents the optimal balance

between accuracy and complexity and is characterized by the largest

positive Bayes factor. The presence of non-zero probabilities for other

reduced models is caused by the small quantitative differences in con-

nectivity parameters with respect to the best model, which led to

lower Bayes factor estimates for these models. Sets of 256 plausible

reduced models were detected for different sample sizes and different

TSSR combinations. All probability estimates were bootstrapped

100 times and averaged for any given sample size and each TSSR

combination.

The best model was detected with approximately the same prob-

ability for each considered TSSR combinations (Figure 2a). Moreover,

the mean probability computed for the best model gradually increased

for n≥50 (Figure 2b). However, the obtained dependencies of the

mean probabilities on the sample size computed for the different

TSSR combinations were slightly different (Figure 2b). In particular,

the best model was detected with a relatively higher probability and

for smaller sample sizes in the case of WM-CSF-95%INDV

(Figure 2b). Since the free energy is the main measure used for model

selection in DCM, the analysis of its variability at different sample

sizes may allow the estimation of a minimal sample size required for

stable DCM analysis. Let us consider the impact of sample size on the

variability of the free energy and the best model selection.

3.3 | Impact of sample size and TSSR on variability
of log-evidence estimates

The main measure used in the DCM for the reduced model selection

is the log-evidence (2) or Bayes factor, computed for a specific model

comparison to the full model (Friston et al., 2003). The bootstrapped

mean log-evidence computed for each of the reduced plausible

models may be useful for quantifying the quality and stability of the

model-selection procedure. In particular, the sensitivity of reduced

model selection to inter-subject variability can be quantified by the

mean variance of the log-evidence computed for the best model for

different sample sizes and TSSR combinations (Figure 2c). The

observed mean variance was relatively large at the small sample sizes

while decreasing as sample size growths. The obtained dependencies

of the mean variance on the sample size demonstrated fluctuating

behavior and started to rapidly decrease at n≥50 for the combina-

tions WM-CSF-95%INDV and WM-CSF-50%TPM. By contrast, in the

case of combination GM-WM-CSF-70%TPM, the gradual decline

started at the larger sample sizes n≥ 100 (Figure 2c).

To further clarify the impact of the sample size and TSSR on

model selection, we computed the mean values of the log evidence

for the best model, together with the bounds of corresponding confi-

dence intervals at different sample sizes and for the different TSSR

combinations. The obtained means fluctuate at approximately 3, which

corresponds to the “strong” evidence for the best model (Zeidman,

Jafarian, Seghier, et al., 2019). The sample size at which the lower

bound of the confidence interval becomes larger than zero can be

considered an approximate minimal threshold value required for sta-

ble estimates of the free energy and stable model selection. The

TABLE 1 Mean posterior expectations (Hz).

Nodes From mPFC From PCC From LIPC From RIPC

To mPFC (�0.46, �0.47, �0.49) (0.17, 0.18, 0.19) (0.13, 0.09, 0.06) (0.16, 0.12, 0.11)

To PCC (0.18, 0.18, 0.17) (�0.08, �0.05, �0.02) (0.41, 0.37, 0.34) (0.16, 0.15, 0.15)

To LIPC (�0.02, �0.02, �0.01) (0.06, 0.06, 0.07) (�0.44, �0.47, �0.5) (0.16, 0.14, 0.15)

To RIPC (0.03, 0.03, 0.02) (0.00, 0.01, 0.02) (0.17, 0.14, 0.11) (�0.46, �0.48, �0.5)

Note: The mean values of the posterior expectations for connections from the three stable connectivity patterns are shown in Figure 1. All mean

connectivity strengths were computed for the entire population of participants using three different combinations of TSSR (WM-CSF-95%INDV, WM-

CSF-50%TPM and GM-WM-CSF-70%TPM). All connections comprising the model with the highest log evidence and those detected with high probability

during the BMR search are shown in bold. The self-connections were parameterized on a log-scale (relative to the prior mean of �0.5).

Abbreviations: LIPC, left inferior pariental cortex; mPFC, medial prefrontal cortex; PCC, precuneus/posterior cingulate cortex; RIPC, right inferior pariental

cortex.

5862 SILCHENKO ET AL.

 10970193, 2023, 17, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26481 by Forschungszentrum
 Jülich G

m
bH

 R
esearch C

enter, W
iley O

nline L
ibrary on [08/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



revealed dependencies of the mean log-evidence and bounds of

the corresponding confidence intervals on the sample size were simi-

lar for all three TSSR combinations (Figure 2d–f). The log-evidence

estimates for the best model became stable at the sample sizes n ≥ 50

as estimated for the significance level 99% confidence interval

(CI) (Figure 2d–f). Thus, the approximate minimal sample size required

for stable model selection may be estimated as n ≈ 50.

3.4 | Stability of connectivity parameters estimates
at different TSSR

To study the impact of sample size and inter-individual variability on

the stability of connectivity parameters estimates, we computed the

mean values of their posterior expectations and variances for different

sample sizes. This was accomplished by inverting all individual DCMs

F IGURE 2 (a) Mean posterior probabilities for the set of 256 selected plausible reduced models. The mean probabilities were computed for
subjects during the Bayesian model reduction (BMR) performed for different combinations of tissue-specific signals regression (TSSR). (b) Mean
posterior probabilities for the most probable model (model 256 in a) computed for different TSSR combinations versus sample size. (c) Mean
variance of log-evidence for the most probable model (model 256 in a) computed for different TSSR combinations versus sample size. (d–f) Mean
values (black curves) of the log-evidence defined by Equation (2) for the most probable model and bounds of its confidence interval (red curves)
computed at different sample sizes and for different TSSR combinations. The approximate values of the minimum sample size, required to make
stable the mean log-evidence estimates, (lower bounds of the confidence intervals do not intersect with zero) are indicated by arrows. All values
presented in the plots were obtained as a mean across 100 bootstrap computations at every sample size.
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(four DCMs per subject) re-fitted using empirical priors. The results of

the PEB group analysis and BMA, performed at the sample size varied

between 10 and 320 with step 10 for the different TSSR combinations,

are presented in Figures 3 and S5–S8. All strong connections attain the

strong enough evidence at the sample size values n≈30�40 for each

of the TSSR combinations used in our study (Figures 3 and S5–S8).

In contrast, a larger sample size n≥50 was needed to detect weak

connections PCC ! LIPC and LIPC ! mPFC, which demonstrated

enhanced sensitivity to inter-subject variability (Figure 3). Mean

values of connectivity strength for the PCC ! LIPC connection

attained their strong enough evidence and saturated at the sample

sizes from the interval n≈50�80 for each of the three TSSR combi-

nations (Figure 3a–c). Another weak connection LIPC ! mPFC

required different threshold sample size values for each of the three

TSSR combinations (Figure 3d–f).

The group estimates of all connectivity parameters computed at

the threshold sample size value n¼50 are summarized in Figure S1.

As seen, the strength of PCC ! LIPC connection just to became

detectable at n≥50 only for the combination GM-WM-CSF-70%

TPM, whereas a larger sample size is required for the other two TSSR

F IGURE 3 The mean posterior expectations (black solid lines) and bounds of the confidence intervals (red solid lines) were computed for the
two weak connections at different sample sizes. The dependencies presented in plots (a) and (d), (b) and (e), and (c) and (f) were computed for the
different combinations of tissue-specific signals regression (TSSR), as indicated in the titles of the plots. The approximate values of a minimum
sample size required to obtain stable estimates of the coupling strength are indicated by arrows. The mean values and bounds of the confidence
intervals presented in the plots were obtained for the distribution of results of 100 bootstrap computations at every sample size.
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combinations. The LIPC ! mPFC connection appeared to be strong in

the case of WM-CSF-95%INDV, whereas for the other two TSSR

combinations, it was weak and became detectable only when n>70

(Figures 3 and S1). This finding is in line with the above results and

allows to consider the sample size n≈50 as the approximate thresh-

old sample size value required for the stable DCM analysis. Of note,

the impact of TSSR on strong connections was not substantial to even

make them weak (Figures S1–S4).

Perhaps, the individual (subject-specific) whole-brain masking

used for the combination WM-CSF-95%INDV allowed to slightly

decrease noise at the subject level what caused strengthening of con-

nection LIPC ! mPFC and made it observable at smaller sample sizes

(Figures 3d and S2). The impact of two other TSSR combinations was

characterized by increased estimates of the minimal sample size to

n≥60 for the combination WM-CSF-50%TPM and to n≥100 for GM-

WM-CSF-70%TPM (Figures 3e, f and S3, S4).

3.5 | Effect size and parameters observation
probabilities for the different combinations of TSSR

To quantify the deviation from the null hypothesis for strong and

weak connections, we calculated the effect size for these connections

for different sample sizes and TSSR combinations. The classical

Cohen's d effect size was calculated at every given sample size using

the averaged mean values and variances obtained as the result of

inversion of individual DCM models re-fitted using empirical priors.

As follows from the results presented in Figure 4a–c, compara-

tively low mean values of the effect size were observed only for the

2 weak connections at the sample size n≤50. In the case of strong

connections, the mean effect size was high for every connection, even

for relatively small sample sizes. Moreover, the obtained mean effect

size values were larger for stronger connections at any given sample

size (Figure 4a–c). The same relationship between the mean effect

size values obtained for the strong and weak connections was

observed for each TSSR combination (Figure 4a–c).

Another basic measure used to detect statistically significant con-

nections within the core DMN was the mean probability of observing

a specific connection computed during the BMR search when all pos-

sible models were scored in accordance with their log evidence. The

computed observation probabilities were bootstrapped across

100 independent computations, for each sample size. The mean

observation probabilities demonstrated different dependencies on

sample size for strong and weak connections (Figure 4d–f). All strong

connections were observed more frequently during the BMR search

and appeared with a probability close to one for sample sizes n≥30.

This estimate is in line with the above estimates for the minimal

threshold sample size for strong connections. In contrast, the

minimal sample size sufficient to observe weak connections with high

probability (P≥0:99) ranged from n≈50 in the case of PCC ! LIPC till

n≈50�150 in the case of LIPC ! mPFC (Figure 4d–f).

Different combinations of TSSR had different impact on the mean

probabilities of observing weak connections. In particular, PCC !

LIPC can be detected with smaller sample sizes for combinations

WM-CSF-70%TPM and GM-WM-CSF-70%TPM (n=100 and n=50,

respectively), while in the case of WM-CSF-95%INDV the required

sample size was n≈120 (Figure 4d). The opposite was observed for

connection LIPC ! mPFC. Mean observation probability approaches

to 0:99% threshold at n≥40 for the combination WM-CSF-95%INDV

and requires larger sample sizes n¼100 and 150 for the two other

combinations (Figure 4e, f). These results agree well with above esti-

mates of the minimum sample size based on computations of the con-

fidence intervals for the mean posterior expectations (Figure 3a–f).

4 | DISCUSSION

DCM analysis of connectivity in neuronal networks examines inter-

regional communication in the brain far more realistic than commonly

used correlation approaches to connectivity, as DCM models direc-

tionality of regional interactions. FC is known to be underpowered in

the case of small sample sizes and to be highly sensitive to different

types of noise (Marek et al., 2022), specifically within scanner move-

ments. To shed light on these two aspects with regard to DCM, we

explored to what extent the stability of EC within the core DMN, esti-

mated by spectral DCM, is affected by inter-subject variability using

systematic sample size variation and bootstrap analysis, respectively.

Additionally, we investigated the impact of extracting different tissue-

specific signal fluctuations, particularly with respect to partial volume

effects and even global GM signals, on the stability of these connec-

tivity estimates for comparatively noise-free BOLD time series. The

later aims to clarify the influence of extensive/non-specific cleaning

of resting-state data on DCM analysis by regressing out potentially

meaningful BOLD fluctuations. The stable connectivity pattern within

the core DMN revealed for the large sample sizes comprised nine con-

nections (Figure 1). The mean posterior expectation for each of these

connections had a high probability of being observed at the group

level. The connections from bilateral IPC to the mPFC and PCC were

rather strong and nonsymmetrical (Table 1). The revealed interhemi-

spheric coupling strength asymmetry had an emphasis on the left side

(Figure 1 and Table 1). The bidirectional connections between the

mPFC and PCC had approximately the same strength and were

slightly stronger than those originating from the RIPC and interhemi-

spheric connections within the IPC (Table 1).

We showed that both stability of the model selection procedure

and inference of connectivity parameters are dependent on the sam-

ple size and inter-individual variability. In particular, the impact of

sample size on group DCM analyses manifests itself in the perturbed

stability of the log-evidence estimates (Figure 2). Bootstraps over

sample sizes revealed high variability of log-evidence for small sample

sizes showing high sensitivity of DCM to the inter-individual variabil-

ity in resting-state time series.

It should be noted that the resting-state HCP ICA-FIX datasets

used in our study were cleaned from noise and physiological artifacts

and were rather large compared with the groups of subjects used in

other studies. Because of these two factors, the minimal threshold
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value revealed in our study may be considered as a lower estimate of

the sample size required for stable DCM analysis. Indeed, a large

inter-subject variability, together with a high noise level and contami-

nation of rs-fMRI datasets by the presence of different movement

artifacts, may require sample sizes that are larger than the n≈50

reported in our study.

The first attempts to reveal a pattern of EC within the core DMN

led to a discrepancy in the results published by several studies (Di &

Biswal, 2014; Friston et al., 2014; Jiao et al., 2011; Li et al., 2012; Razi

et al., 2015; Sharaev et al., 2016). For instance, Li et al. (2012) showed

a directed influence from the PCC to the mPFC using stochastic

DCM, while other authors (Di & Biswal, 2014; Jiao et al., 2011)

reported a causal influence from the mPFC to the PCC, but not vice

versa. We found that both connections were present in a stable pat-

tern (see Figure 1 and Table 1). The group-averaged connectivity

pattern for the best model revealed by Di and Biswal (2014) is also

quite different from the stable pattern revealed in our study. The

authors used stochastic DCM approach for the resting-state fMRI

F IGURE 4 (a–c) The mean values of Cohen's effect size were computed for statistically significant strong and weak connections within the
core default mode network (DMN) at different sample sizes and different combinations of the tissue-specific signals regression (TSSR). The
dependencies obtained for the strong and weak connections are indicated by the black and colored (red and pink) solid lines, respectively. (d–f)
Mean probabilities of parameters observation computed as the result of Bayesian model reduction (BMR) search for the best model in the model
space for different sample sizes. The presented mean values were averaged across 100 bootstrap computations at every considered sample size.
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data to study the patterns of EC within the core DMN. Despite the

fact that the sample size used in that study was equal to 64, most of

the connections in a best model were weak and statistically nonsignif-

icant at the group level with emphasis on the right side (Di &

Biswal, 2014). In this particular case, the presence of such a huge dis-

crepancy between best models may be explained by the lower accu-

racy of stochastic DCM in the case of the resting-state fMRI datasets

compared to the spectral DCM (Friston et al., 2014).

The invention of spectral DCM allowed a decrease in variability in

connectivity parameter estimates for resting-state fMRI data but was

insufficient to reveal all connections within the core DMN at small

sample sizes (Razi et al., 2015). Most of the group-averaged connec-

tivity parameters obtained for the group of 24 subjects were weak,

with emphasis on the left side, and interactions between the bilateral

IPC and mPFC were not symmetric (Razi et al., 2015). A slightly differ-

ent best model and connectivity pattern were revealed for a group of

30 subjects (Sharaev et al., 2016). The best model, reported by Shar-

aev et al. (2016), was characterized by the presence of symmetric

interactions between the IPC, PCC, and mPFC with slight interhemi-

spheric asymmetry with emphasis on the right side, and was similar to

the model reported by Razi et al. (2015). Most of the connections

reported by Sharaev et al. (2016) were stronger than those reported

by Razi et al. (2015), which might be caused by the slightly increased

sample size. The best model and pattern of EC reported by Sharaev

et al. (2016) is also the closest but not identical to the best model and

stable connectivity pattern revealed in our study. In particular, the

pattern observed in our study was characterized by the interhemi-

spheric asymmetry with emphasis on the left side. Moreover, there

was a missing weak connection PCC ! LIPC that could not be

detected at the sample size n¼30. Thus, the sample size is one of the

key factors defining the accuracy and stability of EC estimates.

The stable connectivity pattern revealed in our study verified the

central role of the PCC, which is known to be a hub in the DMN,

through which all other nodes interact (Buckner et al., 2008). The piv-

otal status of the PCC is also justified from a metabolic and mechanis-

tic perspective in that previous positron emission tomography studies

have shown that metabolic activity is higher in the PCC than in all

other regions during rest (Gusnard & Raichle, 2001). The strong inter-

connectivity between the PCC node and the rest of the DMN, as

revealed by the partial correlation network analysis, further supports

the hypothesis that the PCC node in the DMN acts as a convergence

node, where information processing in the two subsystems is inte-

grated (Fransson & Marrelec, 2008). Moreover, PCC is not only driven

by all DMN nodes but may also project weak backward connections

to other nodes and networks, which can be detected only at relatively

large sample sizes but nevertheless play an important role in commu-

nication between subnetworks (Di & Biswal, 2014; Frässle

et al., 2021; Razi et al., 2017).

To examine the possible impact of regression of the tissue-

specific signals on the estimates of EC, we used different combina-

tions of tissue-specific signals. These signals were computed as the

first principal components of the brain signals obtained by using

different whole-brain masks. Two considered combinations, WM-

CSF-95%INDV and WM-CSF-50%TPM, utilize the whole-brain

mask including all voxels belonging to WM and CSF only with proba-

bility thresholds 0.95 and 0.5, respectively. By using these combina-

tions, we can estimate the extent to which the precision of confound

signals detection is able to affect the estimates of EC. Furthermore,

the results obtained for the first TSSR combination (WM-CSF-95%

INDV) based on the individual (subject-specific) whole-brain mask can

be compared with the results for the second combination (WM-CSF-

50%TPM) based on the standard whole-brain mask from SPM. In

addition, another GSR combination including the WM, CSF, and GM

signals (GM-WM-CSF-70%TPM), was computed using the standard

whole-brain mask from SPM. Including a GM signal to the commonly

used combination of WM and CSF confound signals is similar to the

global signal removal and allowed to decrease the amount of physio-

logical noise. Regressing any of the three combinations of the tissue-

specific signals had the same minor impact on strong connections.

The mean posterior expectations for the strong connections attained

higher values for the combination WM-CSF-95%INDV, involving

more precise detection of WM and CSF voxels. The additional regres-

sion of the global GM signal, as reflected by the third combination,

might lead to a decrease in the mean posterior expectations for all

connections, which may be explained by a common weakening of

neuronal signals originating from the GM. The connection LIPC !
mPFC appears to be more sensitive to the GM regression and can be

stably detected only for a rather large sample size (n≥100).

The connectivity parameters in DCM are measured in Hz and

mean the rates of interaction between the chosen brain areas

(Zeidman, Jafarian, Corbin, et al., 2019). Furthermore, there is an

inverse relationship between the rate constants and time constants

that characterize the decay of neuronal responses. When the values

of the connectivity parameters are small or close to zero, the neuronal

responses of the chosen brain regions would decay back for a long

time, that makes it impossible to detect the causality of such interac-

tions (Zeidman, Jafarian, Corbin, et al., 2019). The heuristic threshold

value for the rate constants separating strong and weak connections

was defined as 0.1 Hz (Razi et al., 2015). However, it remains unclear

whether all connections with strengths less than 0.1 Hz must be

removed from the consideration or some of them, having a non-zero

probability to be observed during the BRM, can be included in the

observed connectivity pattern. Moreover, the presence of inter-

subject variability makes it difficult or even impossible to detect weak

connections in the case of small sample sizes. Thus, the presence of

weak connections and their ability to become detectable at large sam-

ple sizes play an important role in revealing the structure of interact-

ing brain circuits. The observed weak connections demonstrated

different sensitivities to the sample size for the different combinations

of TSSR, as indicated in Figure 3. The first weak connection, PCC !
LIPC, was slightly more stable to the variation in the sample size in

the case of the combination (GM-WM-CSF-70%TPM) (Figure 3a–c).

The second weak connection, the LIPC ! mPFC, had different sensi-

tivities to the combinations of TSSR. In particular, a noise reduction at

the individual subject level obtained for the combination (WM-CSF-

95%INDV) allowed the detection of that connection, even at rather
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small sample sizes, as was observed for the strong connections

(Figures 3d and S2). Thus, the individual (subject-specific) masking of

WM and CSF during the preprocessing stage may allow to enhance

the detection of weak connections. Two others TSSR combinations

had opposite effects on the LIPC ! mPFC and resulted in increased

values of the minimum sample size required for the stable estimation

of connectivity parameters (Figure 3e, f).

The mean effect size computed for the strong and weak connec-

tions supports the above findings and indicates that strong

connections attain larger values even at smaller sample sizes, whereas

weak connections can be stably detected at a larger sample size

(Figure 4a-c). Moreover, the results for mean probabilities of parame-

ters observation, which were computed during the course of BRM

best model search, agree well with all findings reported above. The

lowest probabilities to observe were also found for the weakest con-

nections (Figure 4d-f). That supports our conclusion about weak

connections as an important factor defining a minimum sample size

required for the stable DCM analysis.

The generalizability of the results presented above is limited

owing to the use of only one dataset and one brain network in our

analysis. The reported estimates of the minimal sample size for the

stable DCM analysis must be considered as the lowest estimates,

which are likely to be increased in the case of datasets comprising

shorter time series and larger noise levels.

5 | CONCLUSION

We analyzed the stability of the spectral DCM to sample size variation

and the level of physiological noise using a large HCP dataset of

330 unrelated subjects. The estimates of EC within the core DMN

demonstrated sensitivity to both sample size and noise level. In partic-

ular, the increased sample sizes allowed for the detection of weak

connections, which were not detectable for small sample sizes. This

made it possible to reveal a stable and reproducible pattern of EC

within the core DMN. The sample size had a moderate impact on the

strong connections within the core DMN at the group level.

The subject-specific whole-brain masks used during the WM and CSF

signals computations reduced the amount of noise and also enhanced

the ability to detect weak connections. Thus, the presence of weak

connections in brain networks and their sensitivity to inter-subject

variability and physiological noise limits the sample size needed for

stable and reproducible DCM analysis. As observed in our study, the

minimum sample size required for stable estimates of EC must not be

less than 50, even in the case of clean HCP datasets.
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