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1 | INTRODUCTION

Felix Hoffstaedter*> © | Simon B. Eickhoff!?

Abstract

Interactions within brain networks are inherently directional, which are inaccessible
to classical functional connectivity estimates from resting-state functional magnetic
resonance imaging (fMRI) but can be detected using spectral dynamic causal model-
ing (DCM). The sample size and unavoidable presence of nuisance signals during
fMRI measurement are the two important factors influencing the stability of group
estimates of connectivity parameters. However, most recent studies exploring effec-
tive connectivity (EC) have been conducted with small sample sizes and minimally
pre-processed datasets. We explore the impact of these two factors by analyzing
clean resting-state fMRI data from 330 unrelated subjects from the Human Connec-
tome Project database. We demonstrate that both the stability of the model selec-
tion procedures and the inference of connectivity parameters are highly dependent
on the sample size. The minimum sample size required for stable DCM is approxi-
mately 50, which may explain the variability of the DCM results reported so far. We
reveal a stable pattern of EC within the core default mode network computed for
large sample sizes and demonstrate that the use of subject-specific thresholded
whole-brain masks for tissue-specific signals regression enhances the detection of

weak connections.

Despite the great promise for advancing our understanding of the

cognitive abilities that underlie intellectual feats, such brain-wide

Resting-state functional magnetic resonance imaging (fMRI) is the
standard tool for the investigation of brain network connectivity.
Most studies characterizing the intrinsic organization of resting-state
networks are based on functional connectivity (FC), which is defined
as statistical dependencies among observed neurophysiological
responses (Biswal et al., 1995). FC has been shown to encode intellec-
tual performance (Song et al., 2008; Van Den Heuvel et al., 2009),
monitoring of external environment (Gusnard & Raichle, 2001), and

emergence of stimulus-independent thoughts (Mason et al., 2007).

association studies require consortium-level (N > 1000) sample sizes
to avoid under-powered correlations and statistical errors (Marek
et al.,, 2022). The expense and effort necessary for obtaining and ana-
lyzing large fMRI datasets have resulted in numerous small-sample
studies with exceedingly low replicability (Poldrack et al., 2017,
Szucs & loannidis, 2020). Remarkably, sampling variability alone is suf-
ficient to generate nominally significant ($p < 0.05$) but inflated cor-
relations (Marek et al., 2022), whereas the common removal of global
nuisance alters the variance of the residual signal, thereby modifying
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the resulting correlation structure (Fox et al., 2009; Friston, 2011).
Thus, the stability and reliability of FC analyses are strongly limited by
the requirement of large sample sizes and control of noise in fMRI sig-
nals. Another disadvantage of resting-state FC is its inability to cap-
ture the directionality of the observed interactions between brain
regions. A dynamic causal modeling (DCM) approach can be applied
to infer causal (directed) influences between regions (Friston
et al., 2003). The question remains as to whether there are similar lim-
itations for the stable detection of causal interactions between differ-
ent brain regions as in FC?

The basic idea of DCM is to use Bayesian model inversion to esti-
mate the effective connectivity (EC) among neuronal populations from
observed BOLD signals (Friston et al., 2003; Stephan et al., 2010).
Stochastic DCM, initially developed to model task-driven changes in
the EC between brain regions (Li et al., 2012) has been successfully
modified for the analysis of resting-state fMRI data (Friston
et al.,, 2014). The deterministic spectral DCM version uses a power-
law function in the spectral domain to model the neuronal fluctua-
tions. Such fitting of second-order data features makes this scheme
estimation computationally and statistically much more efficient than
stochastic DCM (Razi et al., 2015). Spectral DCM has recently been
validated using simulated and empirical data for both small and large
brain networks (Razi et al., 2017). Additionally, the within-subject reli-
ability of spectral DCM with respect to subjects' conditions and vari-
ous processing parameters (region of interest [ROI] size and global
signal regression [GSR]) was demonstrated in a longitudinal study
(Almgren et al., 2018). Despite the growing popularity of DCM, small
sample sizes (20-30) are still common in recent studies, possibly lead-
ing to divergent estimates of connectivity parameters at the group
level. Indeed, even in the case of relatively small networks such as the
core default mode network (DMN), the patterns of EC found in differ-
ent studies are not fully consistent (Di & Biswal, 2014; Friston
et al,, 2014; Li et al., 2012; Razi et al., 2015; Sharaev et al., 2016).
Thus, the problem of a minimal sample size, required for a robust
DCM analysis, is raised for studies of EC. The main problem with
under-sampled DCM studies, however, is that having few subjects
leads to a relatively small joint model space, which impedes or even
prohibits true parameters estimates due to high inter-subject variabil-
ity. In other words, the correct parameter estimates can be left to
chance or always overestimated because of strong inter-individual
variability (Button et al., 2013; Lindquist et al., 2013).

In the current study, we evaluate the impact of sample size on
the stability of causal interactions between brain regions in Human
Connectome Project (HCP) data to investigate whether this is also a
severe limitation as reported for classical resting-state FC. We explore
the stability of the group EC estimates within the core DMN with
increasing sample size and different combinations of GSR in the com-
paratively large HCP sample. Here, we used public resting-state fMRI
data from 330 unrelated subjects from the HCP database of young
adults. Time series are made available and cleaned from movement-
related and physiological artifacts using the well-tested ICA-FIX
method (Salimi-Khorshidi et al., 2014). This effective noise reduction
should permit a representative definition of the lower boundary of

sample sizes for resting-state DCM, for which common inter-subject
variability allows for stable connectivity estimates.

The core DMN is a well-established intrinsic resting-state net-
work consisting of the ventral medial prefrontal cortex (mPFC), precu-
neus/posterior cingulate cortex (PCC) and is also widely used in
recent EC studies (Di & Biswal, 2014; Friston et al, 2014; Li
et al., 2012; Razi et al.,, 2015; Sharaev et al., 2016). In his influential
review, Raichle suggested that the core DMN mediates internal
modes of cognitive activity (Raichle, 2015). In a review and meta-
analysis on variability in the healthy DMN, Mak et al. (2017) found
that connectivity strength seems to follow an inverse U-shape with
the strongest coupling in adulthood and weaker FC in children and
the elderly. With regard to cognitive performance, there is some evi-
dence for an association between cognitive performance and FC, as
well as with task-induced deactivation of DMN regions, while these
effects are pronounced with aging and clinical conditions in particular.
Our study of EC during the resting state aims to reveal a stable con-
nectivity pattern and shed light on the roles played by different DMN
regions in the formation of sustained activity patterns. The HCP data-
sets for young adults cleaned from artifacts can be the ideal choice
for such study due to the expected strong interaction within the core
DMN, allowing to reveal the patterns of causal interactions.

The presence of noise in fMRI data is a manifestation of many dif-
ferent confounding sources (Behzadi et al., 2007; Liu, 2016; Liu
et al,, 2017). A method widely used to denoise fMRI signals is to cor-
rect resting-state fMRI time-series for fluctuations in the global signal,
which is the average signal across all voxels of the entire magnetic
resonance imaging (MRI) volume. GSR has been shown to enhance
the efficiency of detecting significant FC (Fox et al., 2009; Liu
et al., 2017). Moreover, the effects of GSR on EC within and between
resting-state networks have recently been studied in Almgren et al.
(2020). It was found that the effect of GSR on between-network EC,
averaged over all connections, was negligible to small, whereas the
effect of GSR on individual connections was moderate but non-
negligible (Almgren et al., 2020).

Here, we concentrated on tissue-specific nuisance signals from
the white matter (WM) and cerebrospinal fluid (CSF), which are com-
monly used for filtering fMRI data, because signals of neuronal origin
are not present in these compartments. These nuisance signals are
computed via extraction of fMRI time series from the CSF and WM
masks, and subsequent computation of representative signals using
principal component analysis (Liu, 2016). The cleanup of physiological
noise is known to improve FC results and is an essential step in analy-
sis pipelines (Murphy et al., 2013). In particular, the use of individual
(subject-specific) masks with a high probability threshold during the
extraction of WM and CSF signals enhances filtering performance by
increasing the temporal signal-to-noise ratio (Barton et al., 2019). Is
there any impact of such individual (subject-specific) brain masking on
the stability of the EC estimates? To reveal the impact of tissue-
specific signals regression (TSSR) on the results of spectral DCM and
its possible influence on the optimal sample size estimates, all mea-
sures were computed for the different whole-brain masks and combi-

nations of WM, CSF and grey matter (GM) global signals regression.
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2 | METHODS

21 | Datasets and preprocessing

The datasets used in our study included 330 unrelated subjects
(163 females, mean age 28.48 and SD 3.43) and were obtained
from the 1200 subjects ICA-FIX denoised release of the HCP's
database (Van Essen et al., 2012). All HCP imaging data were
acquired on a customized Siemens 3T Skyra at Washington Univer-
sity (St Louis) using a multiband sequence. Whole-brain resting-
state fMRI images were acquired with a spatial resolution
2 x 2 x 2mm and a temporal resolution 0.72 s. Two sessions of
resting-state fMRI data were collected on consecutive days for
each participant, and each session consisted of two runs. The
length of each resting-state fMRI scan was 14.4 min (1200 frames).
Details of data collection can be found elsewhere (Smith et al., 2013;
Van Essen et al., 2013). To minimize the possible influence of different
artifacts on the observed patterns of EC, we used the ICA-FIX
denoised HCP dataset comprising four sessions for each subject
(Salimi-Khorshidi et al., 2014). Subsequently, a quality check of the
ICA-FIX denoised HCP datasets was performed for every particular
4D dataset using the DVARS toolbox. The intensity of the HCP data
was normalized and spatially transformed to MNI152 space using
FMRIB Software Library (Glasser et al., 2013). We further increased
the signal-to-noise ratio of the fMRI data in spatial parametric map-
ping package (SPM12b revision 7219) by applying spatial smoothing
using a 5mm Gaussian kernel (Hillebrandt et al., 2014). The SPM12b
package (revision 7219) was used to fit the first level GLMs and com-
pute BOLD signals as the principal eigenvariates of ROIs masked by
spheres (8 mm radius) for each of the nodes comprising the core
DMN. The ROI center coordinates were (x=3, y=54, z=—-2) for
mPFC, (x=0, y=—-52, z=26) for PCC, (x=—-50, y=—63, z=32) for
the left inferior pariental cortex (LIPC) and (x =48, y = —69, z= 32) for
the right inferior pariental cortex (RIPC).

2.2 | Effective connectivity: First level analysis
with spectral DCM

The causal interactions between sub-regions forming the core DMN
can be examined using DCM (Friston et al., 2003). DCM consists of
two main components: a hemodynamic forward model that describes
the transformation of synaptic activity to the hemodynamic response
and a bilinear model that describes how activity changes as a function
of inputs, connections, and modulations (Stephan et al., 2010). The bi-

linear model consists of the following equation:

dz
Fr z+Cu, (1)

m
A + Z Uj Bj
=1

where z is the state of the system describing activity level of each

region in the modeled system and u denotes inputs into the system,

which are the external inputs applied to the system. Given the values
of z and u, the dynamics of the system (1) is estimated via calculation
of the matrix A, which describes the fixed EC between sub-regions,
the matrix C describing the sensitivity of different regions to external
inputs, and the matrix B describing the modulations of connectivity as
a function of experimental manipulation j.

Here, we use spectral DCM, which models the FC (statistical
dependencies) among the time series using cross-spectral density as a
measure for fitting data features in the frequency domain (Friston
et al., 2014). Estimation in the frequency domain is significantly
quicker, more efficient, and more sensitive to group differences (Razi
et al., 2015; Seguin et al., 2019). All the four sessions of the HCP data-
set were used in this study. Four fully connected DCM models were
defined and inverted for every subject using spectral DCM to obtain
posterior estimates of the neuronal parameters using the same stan-
dard priors (Friston et al., 2016). All four session-specific individual
DCMs fitted for every subject were used jointly to maximize the
dimensionality of the model space and make more accurate model
selection and connectivity parameter estimates (Friston et al., 2016;
Zeidman, Jafarian, Corbin, et al., 2019).

23 |
analysis

Effective connectivity: Second level group

Next, we used the Parametric Empirical Bayes (PEB) approach to
model how individual (within-subject) connections are related
to group means (Zeidman, Jafarian, Seghier, et al., 2019). In accor-
dance with this approach, intrinsic connectivity is treated as a ran-
dom (between-subject) effect, which is modeled by adding a
random Gaussian component to subject-specific parameters. This
random-effects modeling allows the use of the full posterior den-
sity (the expected strength of each connection and the associated
covariance) over the parameters from each subject's DCM for the
estimation of posterior expectation and uncertainty at the group
level (Friston et al., 2016; Zeidman, Jafarian, Seghier, et al., 2019).
To evaluate the interaction of the nodes forming the core DMN,
we used Bayesian model comparison to explore the space of possible
hypotheses (or models), where each hypothesis assumed that a differ-
ent combination of connectivity parameters could characterize all sub-
jects in the group. A candidate model was obtained by removing one
or more connections to produce nested or reduced forms of a full
model. The obtained reduced model y; is retained if its log evidence

satisfies the following condition:
Fi=In(ply;) - In(plyo) > — 20, )

where yq is the full model. This procedure was performed using
Bayesian model reduction (BMR), which enables analytical calculation
of the log evidence of reduced models from a full model (Friston
et al.,, 2016; Zeidman, Kazan, et al., 2019).

Then, the posterior probability P; for each of the best 256 models
was calculated as the softmax function of the log model evidence:
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P, = exp(F,—)/Z exp(Fj). (3)
j

All individual DCM models at a given sample size were re-fitted
using empirical priors calculated as group means from the original indi-
vidual DCMs (Friston et al., 2015; Friston et al, 2016; Litvak
et al., 2015). First, the use of empirical priors informed by all subjects
from the analyzed group enabled us to obtain a joint model space
formed by the nested models derived from the fully connected model
by pruning one or more connections (Friston et al., 2016; Zeidman,
Kazan, et al., 2019). Second, the obtained joint model space was
reduced to a smaller set of 256 plausible models by means of BMR,
based on scoring of a model log-evidence (Friston et al., 2015; Friston
et al, 2016; Litvak et al, 2015; Zeidman, Jafarian, Seghier,
et al., 2019; Zeidman, Kazan, et al., 2019). The above computations at
the group level were performed 100 times for randomly sampled sub-
jects at every considered sample size. Accordingly, all measures used
in our study were computed as the mean of 100 independent compu-
tations for different sample sizes. In particular, we computed the
mean probabilities for each of the reduced models and explored the
variability of the log-evidence estimates by calculating the confidence
intervals for the Bayes factor of the most probable model. The mean
coupling strengths and the corresponding confidence intervals were
computed for each connection. We also report effect sizes and mean
probability of parameters observation during the BMR. A subsequent
focus on weaker connections allowed for the determination of the
minimal sample size required for stable model selection and robust

estimation of connectivity parameters.

2.4 | Tissue-specific signals regression

In principle, data without GSR provides more information to estimate
EC compared to data after GSR, which encourages the use of data
without GSR in DCM studies. Moreover, the effect of the averaged
GSR on DCM was found to be minor and manifested itself mainly in
the case of small networks (Almgren et al., 2020).

The confound signals originating from non-neuronal compart-
ments, such as WM and CSF also affect voxel signals and may be
computed using different approaches and used in different combina-
tions. Tissue-specific WM and CSF signals can be computed using the
same or subject-specific whole-brain segmentation mask for every
subject. The amount of noise also depends on the probability thresh-
old used during the creation of each specific mask. To address these
two issues, we considered three different combinations of tissue-
specific signals that were computed as the first principal components
of brain signals using different whole-brain masks during BOLD signal
extraction.

The first combination WM-CSF-95%INDV comprised WM and
CSF signals, computed separately for every subject by using an indi-
vidual (subject-specific) whole-brain mask with fixed high probability
threshold equal to 0.95; the second one WM-CSF-50%TPM com-
prised the global WM and CSF signals obtained using the standard

SPM tissue probability map (TPM) for the whole-brain segmentation
with fixed probability threshold equal to 0.5; the third one GM-WM-
CSF-70%TPM comprised WM, CSF and GM tissue-specific signals
computed using the standard TPM whole-brain mask at the fixed
threshold equal to 0.7.

3 | RESULTS

3.1 | Stable connectivity pattern within the
core DMN

The stability of the observed connectivity patterns is understood here
as complete reproducibility at the group level for sample sizes exceed-
ing a threshold value. The stable connectivity pattern within the core
DMN revealed in our study is presented schematically in Figure 1.
The mean values of posterior expectations for all connectivity param-
eters computed for the entire population of subjects and the three
different TSSR combinations are shown in Table 1. In all three cases,
the revealed stable EC pattern comprised nine connections. The con-
nections included in the stable pattern were classified as weak if their
mean coupling strengths were lower than the heuristic level of 0.1 or

strong, otherwise.

WM-CSF-95%INDV
[

mPFC

FIGURE 1 The nodes of the core default mode network (DMN)
and connections between them are schematically indicated by the
circles filled up with the different colors: medial prefrontal cortex
(mPFC) (green), posterior cingulate cortex (PCC) (blue), left inferior
pariental cortex (LIPC) (red), right inferior pariental cortex (RIPC)
(pink). A stable pattern of effective connectivity was formed by
connections that were observed with a high mean probability during
the Bayesian model reduction (BMR). The stable pattern presented in
the plot was computed for the WM-CSF-95%INDV combination of
tissue-specific signals regression (TSSR) using the entire population of
subjects. Stronger connections between DMN nodes are shown by
the thicker arrows. Weak connection is shown by the dashed line
arrow. The mean values of the coupling strengths for all connections
within the core DMN are listed in Table 1.

85UB917 SUOWIWIOD SATES1D) 8|edl|dde aU Aq psuRA0B 8.2 91 O ‘88N JO S9INI 10} ATeIg1TBUIIUO A8|IA LD (SUONIPUCD-PUE-SLLIBY WD A3 | 1M Aleq Ut juo//SdnL) SUORIPUOD pue SWid | 8y} 89S *[£202/2T/80] U0 AIqITaUIIUO AS|IM 'BIUBD UDIessay HAWID Yo!Ine winiuszsBunyos.iod Aq T892 WAU/Z00T 0T/I0p/W0d’ A3 1M Alelq 1 jBut|uo//sdny woiy pepeojumoq *2T ‘€202 '€6T0L60T



%2 | WILEY

SILCHENKO ET AL.

TABLE 1 Mean posterior expectations (Hz).
Nodes From mPFC From PCC
To mPFC (-0.46, —0.47, —0.49) (0.17, 0.18, 0.19)
To PCC (0.18, 0.18,0.17) (—0.08, —0.05, —0.02)
To LIPC (-0.02, —0.02, —0.01) (0.06, 0.06, 0.07)
To RIPC (0.03,0.03, 0.02) (0.00, 0.01, 0.02)

From LIPC

(0.13, 0.09, 0.06)
(0.41, 0.37, 0.34)
(—0.44, —0.47, —0.5)
(0.17,0.14, 0.11)

From RIPC
(0.16,0.12,0.11)
(0.16, 0.15, 0.15)
(0.16, 0.14, 0.15)
(—0.46, —0.48, —0.5)

Note: The mean values of the posterior expectations for connections from the three stable connectivity patterns are shown in Figure 1. All mean
connectivity strengths were computed for the entire population of participants using three different combinations of TSSR (WM-CSF-95%INDV, WM-
CSF-50%TPM and GM-WM-CSF-70%TPM). All connections comprising the model with the highest log evidence and those detected with high probability
during the BMR search are shown in bold. The self-connections were parameterized on a log-scale (relative to the prior mean of —0.5).

Abbreviations: LIPC, left inferior pariental cortex; mPFC, medial prefrontal cortex; PCC, precuneus/posterior cingulate cortex; RIPC, right inferior pariental

cortex.

3.2 | Minimal sample size for stable model
detection and impact of different TSSR combinations

To reveal a stable connectivity pattern within the core DMN, we com-
pared multiple reduced models that encoded different hypotheses to
determine the best model by using the Bayesian model comparison
implemented in the PEB framework. An efficient search for the
256 most plausible models was performed over the joint space of all
the reduced PEB models by scoring their free energy. The resulting
log evidence for each of the 256 most plausible reduced models was
computed as the difference between the free energy and the free
energy of the fully connected model. This difference, called the Bayes
factor, was used to quantify the supremacy of a specific reduced
model with respect to the fully connected model. The reduced models
with positive log evidence had the largest weights during Bayesian
model averaging (BMA).

It should be noted here that most of the 256 plausible reduced
models demonstrated similar connectivity patterns and can be charac-
terized by the mean posterior probabilities (3), which were computed
for each plausible model at different sample sizes and different TSSR
combinations (see Figure 2a). The reduced model that was observed
with the largest probability can be considered the best model (model
256 in Figure 2a). The best model represents the optimal balance
between accuracy and complexity and is characterized by the largest
positive Bayes factor. The presence of non-zero probabilities for other
reduced models is caused by the small quantitative differences in con-
nectivity parameters with respect to the best model, which led to
lower Bayes factor estimates for these models. Sets of 256 plausible
reduced models were detected for different sample sizes and different
TSSR combinations. All probability estimates were bootstrapped
100 times and averaged for any given sample size and each TSSR
combination.

The best model was detected with approximately the same prob-
ability for each considered TSSR combinations (Figure 2a). Moreover,
the mean probability computed for the best model gradually increased
for n=50 (Figure 2b). However, the obtained dependencies of the
mean probabilities on the sample size computed for the different
TSSR combinations were slightly different (Figure 2b). In particular,

the best model was detected with a relatively higher probability and
for smaller sample sizes in the case of WM-CSF-95%INDV
(Figure 2b). Since the free energy is the main measure used for model
selection in DCM, the analysis of its variability at different sample
sizes may allow the estimation of a minimal sample size required for
stable DCM analysis. Let us consider the impact of sample size on the

variability of the free energy and the best model selection.

3.3 | Impact of sample size and TSSR on variability
of log-evidence estimates

The main measure used in the DCM for the reduced model selection
is the log-evidence (2) or Bayes factor, computed for a specific model
comparison to the full model (Friston et al., 2003). The bootstrapped
mean log-evidence computed for each of the reduced plausible
models may be useful for quantifying the quality and stability of the
model-selection procedure. In particular, the sensitivity of reduced
model selection to inter-subject variability can be quantified by the
mean variance of the log-evidence computed for the best model for
different sample sizes and TSSR combinations (Figure 2c). The
observed mean variance was relatively large at the small sample sizes
while decreasing as sample size growths. The obtained dependencies
of the mean variance on the sample size demonstrated fluctuating
behavior and started to rapidly decrease at nz50 for the combina-
tions WM-CSF-95%INDV and WM-CSF-50%TPM. By contrast, in the
case of combination GM-WM-CSF-70%TPM, the gradual decline
started at the larger sample sizes n > 100 (Figure 2c).

To further clarify the impact of the sample size and TSSR on
model selection, we computed the mean values of the log evidence
for the best model, together with the bounds of corresponding confi-
dence intervals at different sample sizes and for the different TSSR
combinations. The obtained means fluctuate at approximately 3, which
corresponds to the “strong” evidence for the best model (Zeidman,
Jafarian, Seghier, et al., 2019). The sample size at which the lower
bound of the confidence interval becomes larger than zero can be
considered an approximate minimal threshold value required for sta-

ble estimates of the free energy and stable model selection. The
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FIGURE 2 (a) Mean posterior probabilities for the set of 256 selected plausible reduced models. The mean probabilities were computed for

subjects during the Bayesian model reduction (BMR) performed for different combinations of tissue-specific signals regression (TSSR). (b) Mean
posterior probabilities for the most probable model (model 256 in a) computed for different TSSR combinations versus sample size. (c) Mean
variance of log-evidence for the most probable model (model 256 in a) computed for different TSSR combinations versus sample size. (d-f) Mean
values (black curves) of the log-evidence defined by Equation (2) for the most probable model and bounds of its confidence interval (red curves)
computed at different sample sizes and for different TSSR combinations. The approximate values of the minimum sample size, required to make
stable the mean log-evidence estimates, (lower bounds of the confidence intervals do not intersect with zero) are indicated by arrows. All values
presented in the plots were obtained as a mean across 100 bootstrap computations at every sample size.

revealed dependencies of the mean log-evidence and bounds of 3.4 | Stability of connectivity parameters estimates
the corresponding confidence intervals on the sample size were simi- at different TSSR
lar for all three TSSR combinations (Figure 2d-f). The log-evidence
estimates for the best model became stable at the sample sizes n = 50 To study the impact of sample size and inter-individual variability on

as estimated for the significance level 99% confidence interval the stability of connectivity parameters estimates, we computed the

(Cl) (Figure 2d-f). Thus, the approximate minimal sample size required

for stable model selection may be estimated as n ~ 50.

mean values of their posterior expectations and variances for different

sample sizes. This was accomplished by inverting all individual DCMs
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FIGURE 3 The mean posterior expectations (black solid lines) and bounds of the confidence intervals (red solid lines) were computed for the
two weak connections at different sample sizes. The dependencies presented in plots (a) and (d), (b) and (e), and (c) and (f) were computed for the
different combinations of tissue-specific signals regression (TSSR), as indicated in the titles of the plots. The approximate values of a minimum
sample size required to obtain stable estimates of the coupling strength are indicated by arrows. The mean values and bounds of the confidence
intervals presented in the plots were obtained for the distribution of results of 100 bootstrap computations at every sample size.

(four DCMs per subject) re-fitted using empirical priors. The results of
the PEB group analysis and BMA, performed at the sample size varied
between 10 and 320 with step 10 for the different TSSR combinations,
are presented in Figures 3 and S5-S8. All strong connections attain the
strong enough evidence at the sample size values n~ 30 — 40 for each
of the TSSR combinations used in our study (Figures 3 and S5-S8).

In contrast, a larger sample size n 2 50 was needed to detect weak
connections PCC — LIPC and LIPC — mPFC, which demonstrated
enhanced sensitivity to inter-subject variability (Figure 3). Mean

values of connectivity strength for the PCC — LIPC connection

attained their strong enough evidence and saturated at the sample
sizes from the interval n~ 50 — 80 for each of the three TSSR combi-
nations (Figure 3a-c). Another weak connection LIPC — mPFC
required different threshold sample size values for each of the three
TSSR combinations (Figure 3d-f).

The group estimates of all connectivity parameters computed at
the threshold sample size value n=50 are summarized in Figure S1.
As seen, the strength of PCC — LIPC connection just to became
detectable at n250 only for the combination GM-WM-CSF-70%
TPM, whereas a larger sample size is required for the other two TSSR
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combinations. The LIPC — mPFC connection appeared to be strong in
the case of WM-CSF-95%INDV, whereas for the other two TSSR
combinations, it was weak and became detectable only when n>70
(Figures 3 and S1). This finding is in line with the above results and
allows to consider the sample size n~ 50 as the approximate thresh-
old sample size value required for the stable DCM analysis. Of note,
the impact of TSSR on strong connections was not substantial to even
make them weak (Figures S1-54).

Perhaps, the individual (subject-specific) whole-brain masking
used for the combination WM-CSF-95%INDV allowed to slightly
decrease noise at the subject level what caused strengthening of con-
nection LIPC — mPFC and made it observable at smaller sample sizes
(Figures 3d and S2). The impact of two other TSSR combinations was
characterized by increased estimates of the minimal sample size to
n 2 60 for the combination WM-CSF-50%TPM and to n = 100 for GM-
WM-CSF-70%TPM (Figures 3e, f and S3, S4).

3.5 | Effect size and parameters observation
probabilities for the different combinations of TSSR

To quantify the deviation from the null hypothesis for strong and
weak connections, we calculated the effect size for these connections
for different sample sizes and TSSR combinations. The classical
Cohen's d effect size was calculated at every given sample size using
the averaged mean values and variances obtained as the result of
inversion of individual DCM models re-fitted using empirical priors.

As follows from the results presented in Figure 4a-c, compara-
tively low mean values of the effect size were observed only for the
2 weak connections at the sample size n<50. In the case of strong
connections, the mean effect size was high for every connection, even
for relatively small sample sizes. Moreover, the obtained mean effect
size values were larger for stronger connections at any given sample
size (Figure 4a-c). The same relationship between the mean effect
size values obtained for the strong and weak connections was
observed for each TSSR combination (Figure 4a-c).

Another basic measure used to detect statistically significant con-
nections within the core DMN was the mean probability of observing
a specific connection computed during the BMR search when all pos-
sible models were scored in accordance with their log evidence. The
computed observation probabilities were bootstrapped across
100 independent computations, for each sample size. The mean
observation probabilities demonstrated different dependencies on
sample size for strong and weak connections (Figure 4d-f). All strong
connections were observed more frequently during the BMR search
and appeared with a probability close to one for sample sizes n = 30.
This estimate is in line with the above estimates for the minimal
threshold sample size for strong connections. In contrast, the
minimal sample size sufficient to observe weak connections with high
probability (P 2 0.99) ranged from n~ 50 in the case of PCC — LIPC till
n~50— 150 in the case of LIPC — mPFC (Figure 4d-f).

Different combinations of TSSR had different impact on the mean

probabilities of observing weak connections. In particular, PCC —

LIPC can be detected with smaller sample sizes for combinations
WM-CSF-70%TPM and GM-WM-CSF-70%TPM (n= 100 and n =50,
respectively), while in the case of WM-CSF-95%INDV the required
sample size was n~ 120 (Figure 4d). The opposite was observed for
connection LIPC — mPFC. Mean observation probability approaches
to 0.99% threshold at n = 40 for the combination WM-CSF-95%INDV
and requires larger sample sizes n=100 and 150 for the two other
combinations (Figure 4e, f). These results agree well with above esti-
mates of the minimum sample size based on computations of the con-

fidence intervals for the mean posterior expectations (Figure 3a-f).

4 | DISCUSSION

DCM analysis of connectivity in neuronal networks examines inter-
regional communication in the brain far more realistic than commonly
used correlation approaches to connectivity, as DCM models direc-
tionality of regional interactions. FC is known to be underpowered in
the case of small sample sizes and to be highly sensitive to different
types of noise (Marek et al., 2022), specifically within scanner move-
ments. To shed light on these two aspects with regard to DCM, we
explored to what extent the stability of EC within the core DMN, esti-
mated by spectral DCM, is affected by inter-subject variability using
systematic sample size variation and bootstrap analysis, respectively.
Additionally, we investigated the impact of extracting different tissue-
specific signal fluctuations, particularly with respect to partial volume
effects and even global GM signals, on the stability of these connec-
tivity estimates for comparatively noise-free BOLD time series. The
later aims to clarify the influence of extensive/non-specific cleaning
of resting-state data on DCM analysis by regressing out potentially
meaningful BOLD fluctuations. The stable connectivity pattern within
the core DMN revealed for the large sample sizes comprised nine con-
nections (Figure 1). The mean posterior expectation for each of these
connections had a high probability of being observed at the group
level. The connections from bilateral IPC to the mPFC and PCC were
rather strong and nonsymmetrical (Table 1). The revealed interhemi-
spheric coupling strength asymmetry had an emphasis on the left side
(Figure 1 and Table 1). The bidirectional connections between the
mPFC and PCC had approximately the same strength and were
slightly stronger than those originating from the RIPC and interhemi-
spheric connections within the IPC (Table 1).

We showed that both stability of the model selection procedure
and inference of connectivity parameters are dependent on the sam-
ple size and inter-individual variability. In particular, the impact of
sample size on group DCM analyses manifests itself in the perturbed
stability of the log-evidence estimates (Figure 2). Bootstraps over
sample sizes revealed high variability of log-evidence for small sample
sizes showing high sensitivity of DCM to the inter-individual variabil-
ity in resting-state time series.

It should be noted that the resting-state HCP ICA-FIX datasets
used in our study were cleaned from noise and physiological artifacts
and were rather large compared with the groups of subjects used in

other studies. Because of these two factors, the minimal threshold
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FIGURE 4 (a-c) The mean values of Cohen's effect size were computed for statistically significant strong and weak connections within the
core default mode network (DMN) at different sample sizes and different combinations of the tissue-specific signals regression (TSSR). The
dependencies obtained for the strong and weak connections are indicated by the black and colored (red and pink) solid lines, respectively. (d-f)
Mean probabilities of parameters observation computed as the result of Bayesian model reduction (BMR) search for the best model in the model
space for different sample sizes. The presented mean values were averaged across 100 bootstrap computations at every considered sample size.

value revealed in our study may be considered as a lower estimate of
the sample size required for stable DCM analysis. Indeed, a large
inter-subject variability, together with a high noise level and contami-
nation of rs-fMRI datasets by the presence of different movement
artifacts, may require sample sizes that are larger than the n~50
reported in our study.

The first attempts to reveal a pattern of EC within the core DMN
led to a discrepancy in the results published by several studies (Di &
Biswal, 2014; Friston et al., 2014; Jiao et al., 2011; Li et al., 2012; Razi

et al., 2015; Sharaev et al., 2016). For instance, Li et al. (2012) showed
a directed influence from the PCC to the mPFC using stochastic
DCM, while other authors (Di & Biswal, 2014; Jiao et al., 2011)
reported a causal influence from the mPFC to the PCC, but not vice
versa. We found that both connections were present in a stable pat-
tern (see Figure 1 and Table 1). The group-averaged connectivity
pattern for the best model revealed by Di and Biswal (2014) is also
quite different from the stable pattern revealed in our study. The

authors used stochastic DCM approach for the resting-state fMRI
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data to study the patterns of EC within the core DMN. Despite the
fact that the sample size used in that study was equal to 64, most of
the connections in a best model were weak and statistically nonsignif-
icant at the group level with emphasis on the right side (Di &
Biswal, 2014). In this particular case, the presence of such a huge dis-
crepancy between best models may be explained by the lower accu-
racy of stochastic DCM in the case of the resting-state fMRI datasets
compared to the spectral DCM (Friston et al., 2014).

The invention of spectral DCM allowed a decrease in variability in
connectivity parameter estimates for resting-state fMRI data but was
insufficient to reveal all connections within the core DMN at small
sample sizes (Razi et al., 2015). Most of the group-averaged connec-
tivity parameters obtained for the group of 24 subjects were weak,
with emphasis on the left side, and interactions between the bilateral
IPC and mPFC were not symmetric (Razi et al., 2015). A slightly differ-
ent best model and connectivity pattern were revealed for a group of
30 subjects (Sharaev et al., 2016). The best model, reported by Shar-
aev et al. (2016), was characterized by the presence of symmetric
interactions between the IPC, PCC, and mPFC with slight interhemi-
spheric asymmetry with emphasis on the right side, and was similar to
the model reported by Razi et al. (2015). Most of the connections
reported by Sharaev et al. (2016) were stronger than those reported
by Razi et al. (2015), which might be caused by the slightly increased
sample size. The best model and pattern of EC reported by Sharaev
et al. (2016) is also the closest but not identical to the best model and
stable connectivity pattern revealed in our study. In particular, the
pattern observed in our study was characterized by the interhemi-
spheric asymmetry with emphasis on the left side. Moreover, there
was a missing weak connection PCC — LIPC that could not be
detected at the sample size n = 30. Thus, the sample size is one of the
key factors defining the accuracy and stability of EC estimates.

The stable connectivity pattern revealed in our study verified the
central role of the PCC, which is known to be a hub in the DMN,
through which all other nodes interact (Buckner et al., 2008). The piv-
otal status of the PCC is also justified from a metabolic and mechanis-
tic perspective in that previous positron emission tomography studies
have shown that metabolic activity is higher in the PCC than in all
other regions during rest (Gusnard & Raichle, 2001). The strong inter-
connectivity between the PCC node and the rest of the DMN, as
revealed by the partial correlation network analysis, further supports
the hypothesis that the PCC node in the DMN acts as a convergence
node, where information processing in the two subsystems is inte-
grated (Fransson & Marrelec, 2008). Moreover, PCC is not only driven
by all DMN nodes but may also project weak backward connections
to other nodes and networks, which can be detected only at relatively
large sample sizes but nevertheless play an important role in commu-
nication between subnetworks (Di & Biswal, 2014; Frassle
et al,, 2021; Razi et al., 2017).

To examine the possible impact of regression of the tissue-
specific signals on the estimates of EC, we used different combina-
tions of tissue-specific signals. These signals were computed as the
first principal components of the brain signals obtained by using

different whole-brain masks. Two considered combinations, WM-

CSF-95%INDV and WM-CSF-50%TPM, utilize the whole-brain
mask including all voxels belonging to WM and CSF only with proba-
bility thresholds 0.95 and 0.5, respectively. By using these combina-
tions, we can estimate the extent to which the precision of confound
signals detection is able to affect the estimates of EC. Furthermore,
the results obtained for the first TSSR combination (WM-CSF-95%
INDV) based on the individual (subject-specific) whole-brain mask can
be compared with the results for the second combination (WM-CSF-
50%TPM) based on the standard whole-brain mask from SPM. In
addition, another GSR combination including the WM, CSF, and GM
signals (GM-WM-CSF-70%TPM), was computed using the standard
whole-brain mask from SPM. Including a GM signal to the commonly
used combination of WM and CSF confound signals is similar to the
global signal removal and allowed to decrease the amount of physio-
logical noise. Regressing any of the three combinations of the tissue-
specific signals had the same minor impact on strong connections.
The mean posterior expectations for the strong connections attained
higher values for the combination WM-CSF-95%INDV, involving
more precise detection of WM and CSF voxels. The additional regres-
sion of the global GM signal, as reflected by the third combination,
might lead to a decrease in the mean posterior expectations for all
connections, which may be explained by a common weakening of
neuronal signals originating from the GM. The connection LIPC —
mPFC appears to be more sensitive to the GM regression and can be
stably detected only for a rather large sample size (n = 100).

The connectivity parameters in DCM are measured in Hz and
mean the rates of interaction between the chosen brain areas
(Zeidman, Jafarian, Corbin, et al., 2019). Furthermore, there is an
inverse relationship between the rate constants and time constants
that characterize the decay of neuronal responses. When the values
of the connectivity parameters are small or close to zero, the neuronal
responses of the chosen brain regions would decay back for a long
time, that makes it impossible to detect the causality of such interac-
tions (Zeidman, Jafarian, Corbin, et al., 2019). The heuristic threshold
value for the rate constants separating strong and weak connections
was defined as 0.1 Hz (Razi et al., 2015). However, it remains unclear
whether all connections with strengths less than 0.1 Hz must be
removed from the consideration or some of them, having a non-zero
probability to be observed during the BRM, can be included in the
observed connectivity pattern. Moreover, the presence of inter-
subject variability makes it difficult or even impossible to detect weak
connections in the case of small sample sizes. Thus, the presence of
weak connections and their ability to become detectable at large sam-
ple sizes play an important role in revealing the structure of interact-
ing brain circuits. The observed weak connections demonstrated
different sensitivities to the sample size for the different combinations
of TSSR, as indicated in Figure 3. The first weak connection, PCC —
LIPC, was slightly more stable to the variation in the sample size in
the case of the combination (GM-WM-CSF-70%TPM) (Figure 3a-c).
The second weak connection, the LIPC — mPFC, had different sensi-
tivities to the combinations of TSSR. In particular, a noise reduction at
the individual subject level obtained for the combination (WM-CSF-
95%INDV) allowed the detection of that connection, even at rather
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small sample sizes, as was observed for the strong connections
(Figures 3d and S2). Thus, the individual (subject-specific) masking of
WM and CSF during the preprocessing stage may allow to enhance
the detection of weak connections. Two others TSSR combinations
had opposite effects on the LIPC — mPFC and resulted in increased
values of the minimum sample size required for the stable estimation
of connectivity parameters (Figure 3e, f).

The mean effect size computed for the strong and weak connec-
tions supports the above findings and indicates that strong
connections attain larger values even at smaller sample sizes, whereas
weak connections can be stably detected at a larger sample size
(Figure 4a-c). Moreover, the results for mean probabilities of parame-
ters observation, which were computed during the course of BRM
best model search, agree well with all findings reported above. The
lowest probabilities to observe were also found for the weakest con-
nections (Figure 4d-f). That supports our conclusion about weak
connections as an important factor defining a minimum sample size
required for the stable DCM analysis.

The generalizability of the results presented above is limited
owing to the use of only one dataset and one brain network in our
analysis. The reported estimates of the minimal sample size for the
stable DCM analysis must be considered as the lowest estimates,
which are likely to be increased in the case of datasets comprising
shorter time series and larger noise levels.

5 | CONCLUSION

We analyzed the stability of the spectral DCM to sample size variation
and the level of physiological noise using a large HCP dataset of
330 unrelated subjects. The estimates of EC within the core DMN
demonstrated sensitivity to both sample size and noise level. In partic-
ular, the increased sample sizes allowed for the detection of weak
connections, which were not detectable for small sample sizes. This
made it possible to reveal a stable and reproducible pattern of EC
within the core DMN. The sample size had a moderate impact on the
strong connections within the core DMN at the group level.
The subject-specific whole-brain masks used during the WM and CSF
signals computations reduced the amount of noise and also enhanced
the ability to detect weak connections. Thus, the presence of weak
connections in brain networks and their sensitivity to inter-subject
variability and physiological noise limits the sample size needed for
stable and reproducible DCM analysis. As observed in our study, the
minimum sample size required for stable estimates of EC must not be

less than 50, even in the case of clean HCP datasets.
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